Deteksi Tepi
import
numpy as np import
matplotlib.pyplot as plt from
skimage import filters from
skimage.data import camera from
skimage.util import compare_images image
= camera() edge_roberts
= filters.roberts(image) edge_sobel
= filters.sobel(image) fig,
axes = plt.subplots(ncols=2, sharex=True, sharey=True, figsize=(8, 4)) axes[0].imshow(edge_roberts,
cmap=plt.cm.gray) axes[0].set_title('Roberts
Edge Detection') axes[1].imshow(edge_sobel,
cmap=plt.cm.gray) axes[1].set_title('Sobel
Edge Detection') for
ax in axes: ax.axis('off') plt.tight_layout() plt.show() |
import numpy
as np import
matplotlib.pyplot as plt from
skimage.color import rgb2gray from
skimage import data from
skimage.filters import gaussian from
skimage.segmentation import active_contour img
= data.text()
r
= np.linspace(136, 50, 100) c
= np.linspace(5, 424, 100) init
= np.array([r, c]).T
snake
= active_contour(gaussian(img, 1), init, boundary_condition='fixed', alpha=0.1, beta=1.0,
w_line=-5, w_edge=0, gamma=0.1)
fig,
ax = plt.subplots(figsize=(9, 5)) ax.imshow(img,
cmap=plt.cm.gray) ax.plot(init[:,
1], init[:, 0], '--r', lw=3) ax.plot(snake[:,
1], snake[:, 0], '-b', lw=3) ax.set_xticks([]),
ax.set_yticks([]) ax.axis([0,
img.shape[1], img.shape[0], 0])
plt.show() |
import
numpy as np import
matplotlib.pyplot as plt import
skimage import
skimage.color as skic import
skimage.filters as skif import
skimage.data as skid import
skimage.util as sku %matplotlib
inline |
def
show(img): fig, ax = plt.subplots(1, 1, figsize=(8,
8)) ax.imshow(img, cmap=plt.cm.gray) ax.set_axis_off() plt.show() |
img
= skic.rgb2gray(skid.astronaut()) show(img) |
|
show(skif.gaussian(img,
5.)) |
|
sobimg
= skif.sobel(img) show(sobimg) |
|
from ipywidgets import
widgets @widgets.interact(x=(0.01,
.2, .005)) def edge(x): show(sobimg < x) |
img =
skimage.img_as_float(skid.astronaut()) # We take a portion of the
image to show the details. img = img[50:200, 150:300] # We add Gaussian noise. img_n =
sku.random_noise(img) show(img_n) |
|
img_r = skimage.restoration.denoise_tv_bregman( img_n, 5.) fig, (ax1, ax2, ax3) =
plt.subplots( 1, 3, figsize=(12, 8)) ax1.imshow(img_n) ax1.set_title('With
noise') ax1.set_axis_off() ax2.imshow(img_r) ax2.set_title('Denoised') ax2.set_axis_off() ax3.imshow(img) ax3.set_title('Original') ax3.set_axis_off() |
|
0 Response to "Pengolahan Citra Biner"
Posting Komentar