import numpy as np import matplotlib.pyplot as plt METHOD = 'uniform' plt.rcParams['font.size'] = 9 def plot_circle(ax, center, radius, color): circle = plt.Circle(center, radius, facecolor=color, edgecolor='0.5') ax.add_patch(circle) def plot_lbp_model(ax, binary_values): """Draw the schematic for a local binary pattern.""" # Geometry spec theta = np.deg2rad(45) R = 1 r = 0.15 w = 1.5 gray = '0.5' # Draw the central pixel. plot_circle(ax, (0, 0), radius=r, color=gray) # Draw the surrounding pixels. for i, facecolor in enumerate(binary_values): x = R * np.cos(i * theta) y = R * np.sin(i * theta) plot_circle(ax, (x, y), radius=r, color=str(facecolor)) # Draw the pixel grid. for x in np.linspace(-w, w, 4): ax.axvline(x, color=gray) ax.axhline(x, color=gray) # Tweak the layout. ax.axis('image') ax.axis('off') size = w + 0.2 ax.set_xlim(-size, size) ax.set_ylim(-size, size) fig, axes = plt.subplots(ncols=5, figsize=(7, 2)) titles = ['flat', 'flat', 'edge', 'corner', 'non-uniform'] binary_patterns = [np.zeros(8), np.ones(8), np.hstack([np.ones(4), np.zeros(4)]), np.hstack([np.zeros(3), np.ones(5)]), [1, 0, 0, 1, 1, 1, 0, 0]] for ax, values, name in zip(axes, binary_patterns, titles): plot_lbp_model(ax, values) ax.set_title(name)
from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data from skimage.color import label2rgb # settings for LBP radius = 3 n_points = 8 * radius def overlay_labels(image, lbp, labels): mask = np.logical_or.reduce([lbp == each for each in labels]) return label2rgb(mask, image=image, bg_label=0, alpha=0.5) def highlight_bars(bars, indexes): for i in indexes: bars[i].set_facecolor('r') image = data.brick() lbp = local_binary_pattern(image, n_points, radius, METHOD) def hist(ax, lbp): n_bins = int(lbp.max() + 1) return ax.hist(lbp.ravel(), density=True, bins=n_bins, range=(0, n_bins), facecolor='0.5') # plot histograms of LBP of textures fig, (ax_img, ax_hist) = plt.subplots(nrows=2, ncols=3, figsize=(9, 6)) plt.gray() titles = ('edge', 'flat', 'corner') w = width = radius - 1 edge_labels = range(n_points // 2 - w, n_points // 2 + w + 1) flat_labels = list(range(0, w + 1)) + list(range(n_points - w, n_points + 2)) i_14 = n_points // 4 # 1/4th of the histogram i_34 = 3 * (n_points // 4) # 3/4th of the histogram corner_labels = (list(range(i_14 - w, i_14 + w + 1)) + list(range(i_34 - w, i_34 + w + 1))) label_sets = (edge_labels, flat_labels, corner_labels) for ax, labels in zip(ax_img, label_sets): ax.imshow(overlay_labels(image, lbp, labels)) for ax, labels, name in zip(ax_hist, label_sets, titles): counts, _, bars = hist(ax, lbp) highlight_bars(bars, labels) ax.set_ylim(top=np.max(counts[:-1])) ax.set_xlim(right=n_points + 2) ax.set_title(name) ax_hist[0].set_ylabel('Percentage') for ax in ax_img: ax.axis('off')
# settings for LBP radius = 2 n_points = 8 * radius def kullback_leibler_divergence(p, q): p = np.asarray(p) q = np.asarray(q) filt = np.logical_and(p != 0, q != 0) return np.sum(p[filt] * np.log2(p[filt] / q[filt])) def match(refs, img): best_score = 10 best_name = None lbp = local_binary_pattern(img, n_points, radius, METHOD) n_bins = int(lbp.max() + 1) hist, _ = np.histogram(lbp, density=True, bins=n_bins, range=(0, n_bins)) for name, ref in refs.items(): ref_hist, _ = np.histogram(ref, density=True, bins=n_bins, range=(0, n_bins)) score = kullback_leibler_divergence(hist, ref_hist) if score < best_score: best_score = score best_name = name return best_name brick = data.brick() grass = data.grass() gravel = data.gravel() refs = { 'brick': local_binary_pattern(brick, n_points, radius, METHOD), 'grass': local_binary_pattern(grass, n_points, radius, METHOD), 'gravel': local_binary_pattern(gravel, n_points, radius, METHOD) } # classify rotated textures print('Rotated images matched against references using LBP:') print('original: brick, rotated: 30deg, match result: ', match(refs, rotate(brick, angle=30, resize=False))) print('original: brick, rotated: 70deg, match result: ', match(refs, rotate(brick, angle=70, resize=False))) print('original: grass, rotated: 145deg, match result: ', match(refs, rotate(grass, angle=145, resize=False))) # plot histograms of LBP of textures fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(nrows=2, ncols=3, figsize=(9, 6)) plt.gray() ax1.imshow(brick) ax1.axis('off') hist(ax4, refs['brick']) ax4.set_ylabel('Percentage') ax2.imshow(grass) ax2.axis('off') hist(ax5, refs['grass']) ax5.set_xlabel('Uniform LBP values') ax3.imshow(gravel) ax3.axis('off') hist(ax6, refs['gravel']) plt.show()
0 Response to "Local Binary Pattern for texture classification"
Posting Komentar