matplotlib.pyplot
adalah kumpulan fungsi yang membuat matplotlib berfungsi seperti fungsi grafik atau plot yang ada di MATLAB. Setiap pyplot ber
fungsi membuat beberapa perubahan pada gambar: misalnya, membuat gambar, membuat area grafik/plot dalam gambar, memplot beberapa garis di area plot, menghiasi plot dengan label, dll.
Di matplotlib.pyplot
berbagai status dipertahankan di seluruh panggilan fungsi, sehingga melacak hal-hal seperti gambar saat ini dan area plot, dan fungsi plot diarahkan ke sumbu saat ini (harap dicatat bahwa "sumbu" di sini dan di sebagian besar tempat dalam dokumentasi merujuk ke bagian sumbu dari suatu gambar dan bukan istilah matematika yang ketat untuk lebih dari satu sumbu).
Contoh:
Input:
import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('Nomor')
plt.show()
Output:
Output:
names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]
plt.figure(figsize=(9, 3))
plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()
Output:
Input:
def f(t):
return np.exp(-t) * np.cos(2*np.pi*t)
t1 = np.arange(0.0, 5.0, 0.1)
t2 = np.arange(0.0, 5.0, 0.02)
plt.figure()
plt.subplot(211)
plt.plot(t1, f(t1), 'bo', t2, f(t2), 'k')
plt.subplot(212)
plt.plot(t2, np.cos(2*np.pi*t2), 'r--')
plt.show()
Output:
Input:
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
# Data histogram
n, bins, patches = plt.hist(x, 50, density=1, facecolor='g', alpha=0.75)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()
Input:
ax = plt.subplot()
t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2*np.pi*t)
line, = plt.plot(t, s, lw=2)
plt.annotate('local max', xy=(2, 1), xytext=(3, 1.5),
arrowprops=dict(facecolor='red', shrink=0.05),
)
plt.ylim(-2, 2)
plt.show()
Input:
# Random
np.random.seed(19680801)
# membuat beberapa data dalam interval terbuka (0, 1)
y = np.random.normal(loc=0.5, scale=0.4, size=1000)
y = y[(y > 0) & (y < 1)]
y.sort()
x = np.arange(len(y))
# plot with various axes scales
plt.figure()
# linear
plt.subplot(221)
plt.plot(x, y)
plt.yscale('linear')
plt.title('linear')
plt.grid(True)
# log
plt.subplot(222)
plt.plot(x, y)
plt.yscale('log')
plt.title('log')
plt.grid(True)
# symmetric log
plt.subplot(223)
plt.plot(x, y - y.mean())
plt.yscale('symlog', linthresh=0.01)
plt.title('symlog')
plt.grid(True)
# logit
plt.subplot(224)
plt.plot(x, y)
plt.yscale('logit')
plt.title('logit')
plt.grid(True)
# Adjust the subplot layout, because the logit one may take more space
# than usual, due to y-tick labels like "1 - 10^{-3}"
plt.subplots_adjust(top=0.92, bottom=0.08, left=0.10, right=0.95, hspace=0.25,
wspace=0.35)
plt.show()
Output:
0 Response to "Menggunakan Matplotlib Pyplot"
Posting Komentar